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Abstract. The selection, weighting and transformation of variables are essential 

phases of the modelling process. Two approaches can be applied to improve a 

model’s accuracy: the selection of variables and the transformation of variables. In 

symbolic data analysis, two different approaches can be adopted: principal 

component analysis (PCA) and spectral clustering. In all cases, we initially start with 

a set of symbolic variables and, after transformation, we obtain either classical 

variables (single numeric values) or symbolic variables that can be used in various 

models. The paper presents and compares PCA and spectral clustering for symbolic 

data when dealing with the problem of variable transformation. Artificial data with a 

known cluster structure was used to compare both single and ensemble clustering 

approaches. The results suggest that spectral clustering achieves better results for 

single and ensemble models. 
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component analysis 
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1. Introduction 

 

Machine learning techniques are very useful in dealing with discrimination 

tasks, as they are able to address various problems and are usually quite 

accurate. In many cases, a one-digit prediction error can be reached for 
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different test sets (Meyer et al., 2003). Generally, it can be said that machine 

learning methods have reached a high level of complexity, adaptiveness, etc. 

and they can detect the relations and rules that occur in a dataset. 

Wolpert and Macready (1997) show that the search for the best method for 

solving all problems associated with machine learning is useless, as no such 

method exists. The choice of the method should be problem-based and related 

to a particular classification problem. In many cases combining (aggregating) 

different models (methods) can prove a good solution. Models that combine 

the results obtained from different models is known as ensemble learning (see 

for example Kuncheva, 2014; Polikar, 2012; Sagi & Rokach, 2018; Zhou, 

2021). Hybrid models propose a similar solution (see for example: Ardabili et 

al., 2019; Tsai & Chen, 2010). 

In general, the main goal of cluster analysis is to obtain relatively 

homogeneous clusters, i.e. groups of objects that are similar when considering 

the variables used in cluster analysis. Usually, we would like the clusters to be 

isolated and cohesive (Gnanadesikan et al., 1995, p. 3). The key issue that has 

a major impact on the clustering process is the method of variable selection as 

it affects the information that will be provided to the model. 

Selecting as many variables as possible seems to be inefficient and time-

consuming. As we consider the variable selection for clustering, we want the 

final clusters to be relatively homogeneous (Gnanadesikan et al., 1995; Guyon 

& Elisseeff, 2003). This can be achieved by: 

• selecting weights for variables (representing the variables’ ‘importance’ in 

clustering); 

• variable selection, where from initial 𝑛 variables, we select 𝑚 (𝑚 ≤ 𝑛). This 

can be seen as a special case of weighting variables, where the selected ones 

are assigned weight 1 and those not selected 0; 



 

 

• replacing the initial 𝑛 variables with new variables. This is known as 

variable transformation. Such new variables can have some known and 

desirable properties. 

This paper presents and compares two methods for variable transformation 

for symbolic data: principal component analysis (PCA) and spectral clustering. 

In the empirical part of the paper, datasets with a known number of clusters are 

used for single and ensemble clustering methods to compare how the proposed 

transformation methods affect the results of clustering. All the simulations 

were done using the R software. 

This paper is organised as follows: Section 2 introduces the main aspects of 

symbolic data and shows PCA and spectral clustering as techniques for 

symbolic variable transformation. Section 3 presents the artificial datasets and 

ensemble clustering for symbolic data. The results for simple and ensemble 

clustering that are compared according to the adjusted Rand index are 

described in Section 4 and Section 5 summarises the key findings. 

 

2. Variable transformation for symbolic data 

 

Each symbolic object can be described by different variables (see Table 1 to 

view some examples). These variables can be (Billard & Diday, 2006; Bock & 

Diday, 2000): 

1. Quantitative (numerical values): 

a) numerical single-valued variables; 

b) numerical multi-valued variables; 

c) interval-valued variables; 

d) histogram variables; 

2. Qualitative (categorical values): 



 

 

a) categorical single-valued variables; 

b) categorical multi-valued variables; 

c) categorical modal variables. 

 

Table 1. Examples of symbolic variables 

Symbolic 
variable 

Realisations Variable type 

price of a car  
(in EUR) 

(19,000; 23,000); (20,000; 35,000);  
(22,000; 37,000); (32,000; 47,000) 

interval-valued 
(non-disjoint) 

engine capacity 
(in ccm) 

(1,000; 1,200); (1,300; 1,400) 
(1,500; 1,800); (1,900; 2,200) 

interval-valued 
(disjoint) 

chosen car 
colour 

{red, black, blue, yellow} 
{magenta, white, grey, violet} 

categorical 
multi-valued 

preferred car 
brand 

{Toyota (0.7); Audi (0.3)} 
{Skoda (0.6); VW (0.3); Other (0.1)} 

categorical modal 

distance 
travelled daily 
[in km] 

<10, 20> (0.65); <21, 30> (0.35) 
<10, 20> (0.40); <21, 30> (0.60) 

histogram 

sex of a person {male, female} classical (nominal) 

age of the 
customer 

20, 30, 40, 55, 24, 35, 47 classical (ratio) 

Source: author’s work based on: Billard and Diday (2006), Bock and Diday (2000). 

 
Symbolic data allow us to consider the uncertainty and variability in the data, 

enabling the description of objects in a new, more complex way. New methods, 

however, are necessary to analyse this type of data. 

When dealing with the issue of variable transformation for symbolic 

interval-valued data, two approaches can be adopted: 

a) PCA for symbolic data (PCA-SDA); 

b) spectral clustering for symbolic data (SPEC-SDA). 

The well-known PCA for classical data involves the following steps (Hair et 

al., 2010; Krzanowski, 2000): 

a) obtaining correlation (or covariance) matrix (𝐑) for standardised data; 

b) calculation of eigenvalues and eigenvectors for 𝐑; 

c) sorting eigenvalues and eigenvectors in ascending order and selecting the 

first 𝑠 of them. As a result, a reduced matrix is obtained; 



 

 

d) multiplying the initial data matrix by the reduced eigenvalue matrix. 

When dealing with interval-valued symbolic data, several approaches 

(algorithms) can be applied in the case of PCA-SDA. 

The first proposals where the mode (the value that appears most often in a 

set of data values) or the average used as representative of the interval-valued 

data were introduced by Nagabhushan et al. (1995). Cazes et al. (1997) and 

Chouakria et al. (2000) proposed vertices PCA (VPCA) and centres PCA 

(CPCA), where the vertices of the hyperboxes or centres of the interval were 

used as representatives of interval-valued symbolic data. 

The VPCA was improved by Lauro et al. (2000) and Douzal-Chouakria et 

al. (2011) by introducing a label matrix and allowing for trivial intervals and 

generalised weight functions. 

Palumbo and Lauro (2003) proposed a midpoint and radii PCA (MRPCA) 

by introducing a radius to the CPCA method. D’Urso and Giordani (2004) 

devised a way to use least squares for MRPCA, while Gioia and Lauro (2006) 

introduced the application of interval algebra for all the calculations. Le-

Rademacher and Billard (2012) showed how to apply covariance to extend the 

classical PCA. Wang et al. (2012) proposed a complete information-based 

PCA (CIPCA). Chen et al. (2015) defined a covariance matrix for probabilistic 

symbolic data and presented a new PCA based on this variance-covariance 

structure. 

Zuccolotto (2006) suggested describing objects by estimated means of a 𝑝-

dimensional variable. Oliveira et al. (2017) proposed the use of truncated 

versions of symbolic principal components that apply a strict subset of the 

original symbolic variables as a way to improve the interpretation of symbolic 

principal components. Ichino (2011) introduced a new quantification method 

for symbolic PCA. The quantile method is applied for histogram and nominal 

multi-value types and other types of symbolic data at the time. Su and Wu 



 

 

(2024) suggested the adaptation of the symbolic PCA method for time series 

data. 

In this paper, the CPCA, MRPCA and also methods based on the covariance 

matrix will be applied for dimensionality reduction in ensemble clustering 

methods. 

In the CPCA, the 𝐗𝐶  (𝑁 × 𝑝) matrix is calculated from the symbolic data 

matrix, where symbolic interval-valued data is replaced (substituted) by its 

midpoint (centre): 

 

 𝐗𝐶 = [

𝑥11
𝑐 ⋯ 𝑥1𝑝

𝑐

⋮ ⋱ ⋮
𝑥𝑁1

𝑐 ⋯ 𝑥𝑁𝑝
𝑐

], (1) 

 

where the centre is calculated as 𝑥𝑖𝑗
𝑐 =

𝑥𝑖𝑗+𝑥𝑖𝑗

2
, with 𝑥𝑖𝑗 being the lower bound 

of the 𝑗-th symbolic interval-valued variable, and 𝑥𝑖𝑗 being the upper bound of 

the 𝑗-th symbolic interval-valued variable. 

Matrix 𝐗𝐶  contains the coordinates of the 𝑁 hyper-rectangles. The well-

known classical PCA is applied to this matrix. Then, all the vertices of each 

hyper-rectangle are projected in the obtained subspace and the lower-

dimensional rectangles (if we extract only two principal components) are 

constructed with segments covering all the projections. This method assumes 

that the hyper-rectangle can be well-represented by its centres and then the 

obtained subspace optimising the projection of the centres should also be 

optimal for the hyper-rectangles. 

The PCA for symbolic interval-valued data can be additionally done by 

using ranges (radii) and midpoints (centres). In this case, the covariance matrix 

can take the following form: 

 



 

 

Cov(𝐗) =
1

𝑛
(𝐗𝐶)T(𝐗𝐶) +

1

𝑛
Δ([𝐗])TΔ([𝐗]) +

1

𝑛
[𝐗𝐶Δ([𝐗]) + Δ([𝐗])T𝐗𝐶], (2) 

 

where 𝐗𝐶 is the matrix of the midpoints (centres) and Δ([𝐗]) is the standard 

variance-covariance matrix calculated for single-valued data. 

Two independent PCAs should be singly exploited on those two matrices 

which, however, do not cover the whole variance. A solution to this problem 

is reflected in the formula: 𝐗𝐶Δ([𝐗]) + Δ([𝐗])T𝐗𝐶. It takes into account the 

residual variance simultaneously and it allows for a logical, graphical 

representation of data. This is a well-known PCA on the interval midpoints 

whose solutions are given by 𝐗𝐶Σ−1𝐮𝑚
𝑐 = 𝜆𝑚

𝑐 𝐮𝑚
𝑐 , with 𝜆𝑚

𝑐  being defined under 

the usual orthonormality constraints. Similarly to the PCA that is based on 

midpoints, the solutions are obtained for ranges Δ([𝐗])Σ−1𝐮𝑚
𝑟 = 𝜆𝑚

𝑟 𝐮𝑚
𝑟 , with 

the same orthonormality constraints for 𝜆𝑚
𝑟  and 𝐮𝑚

𝑟 . 

Palumbo and Lauro (2003) suggest maximising the convergence coefficient 

between the midpoints and radii proposed by Tucker: 

 

 𝑓(𝑇) =
𝑡′𝑙Δ([𝐗])𝑙

T𝐗𝐶

(𝑡′𝑙Δ([𝐗])𝑙
TΔ([𝐗])𝑙𝑡)

1/2
((𝐗𝐶)

T
𝐗𝐶)

1/2, (3) 

 

where: [𝑡1, … , 𝑡𝑙, … , 𝑡𝑝] is the rotation matrix. 

Furthermore, the PCA for symbolic interval-valued data can be done by 

using a covariance. In this case, the total sum of products (SPT) is decomposed 

into two components: the sum of products within (SPW) and the sum of 

products between (SPB), and these products are connected to the covariance: 

 

 𝑛𝐶𝑜𝑣𝑗1,𝑗2 = 𝑆𝑃𝑇𝑗1,𝑗2 = 𝑆𝑃𝑊𝑗1 ,𝑗2 + 𝑆𝑃𝐵𝑗1,𝑗2 , (4) 

 



 

 

where: 𝐶𝑜𝑣𝑊𝑗1 ,𝑗2 =
𝑆𝑊𝑊𝑗1,𝑗2

𝑛
=

1

𝑛
∑

(𝑥𝑖𝑗1−𝑥𝑖𝑗1)(𝑥𝑖𝑗2−𝑥𝑖𝑗2)

12

𝑛
𝑖=1  and 𝐶𝑜𝑣𝐵𝑗1,𝑗2 =

𝑆𝐵𝐵𝑗1,𝑗2

𝑛
=

1

𝑛
∑ (

𝑥𝑖𝑗1−𝑥𝑖𝑗1

2
− 𝑋𝑗1) (

𝑥𝑖𝑗2−𝑥𝑖𝑗2

2
− 𝑋𝑗2)

𝑛
𝑖=1 . 

The covariance approach for PCA utilises all the information in the symbolic 

data. The 𝐶𝑜𝑣 matrix is decomposed into 𝐶𝑜𝑣𝑊 and 𝐶𝑜𝑣𝐵 matrices. This 

allows for a deeper insight into the PCA results for traces of these matrices. 

Spectral clustering is not a new clustering method, but rather a new way of 

preparing the dataset for other clustering methods (e.g. 𝑘-means, hierarchical 

clustering, etc.). Finite-sample properties of spectral clustering have been 

shown by Ng et al. (2002), Shi and Malik (2000). 

Spectral clustering has the advantage of performing effectively in the 

presence of non-Gaussian clusters. Additionally, this approach is free from the 

drawback of the presence of local minima. The results obtained via spectral 

clustering in many cases outperform other well-known clustering methods 

(Luxburg, 2007). What is more, spectral clustering can detect clusters of 

different shapes, as it makes no assumptions according to the shape of clusters 

(Luxburg, 2007). 

  Spectral clustering, however, has its disadvantages. The choice of a good 

similarity graph is a challenging task, and, usually, it entails a fully connected 

graph. Spectral clustering can also be unstable under different choices of the 

parameters for the neighbourhood graphs. Another problem is the selection of 

the kernel for spectral clustering. Many different kernels can be applied and 

each of them can lead to different outcomes The Gaussian kernel tends to be 

used most often (see Karatzoglou, 2006, where the application of different 

kernels is presented). 

Another issue in spectral clustering is the selection of a good 𝜎 parameter. 

This parameter should minimise the inter-cluster distances for a given number 



 

 

of clusters. Karatzoglou (2006) proposed an efficient algorithm for finding the 

optimal 𝜎 parameter. 

The spectral clustering algorithm for symbolic data involves the following 

steps: 

1. Let 𝐗 be the symbolic data table with 𝑛 rows and 𝑚 columns. Let 𝑢 be the 

number of clusters; 

2. Let 𝐀 = [𝑎𝑖𝑘] be an affinity matrix for the objects. This 𝐀 matrix can be 

calculated in many ways and its elements can be defined as: 

  

 𝐴𝑖𝑘 = exp(−𝜎 ∙ 𝑑𝑖𝑘) for 𝑖 ≠ 𝑘, (5) 

 

where 𝜎 is the scaling parameter that minimises the sum of the inter-cluster 

distances for the given number of clusters 𝑢 and 𝑑𝑖𝑘 is the distance between 

the 𝑖-th and 𝑘-th object; 

3. Calculation of the Laplacian: 𝐋 = 𝐃1/2𝐀𝐃1/2 (with 𝐃 being the weight 

matrix with sums of each row from 𝐀 on the diagonal); 

4. Calculation of eigenvectors and eigenvalues of 𝐋; 

5. First 𝑢 eigenvectors create the 𝐄 matrix. Each eigenvector is treated as a 

column of 𝐄, thus 𝐄 has 𝑛 × 𝑢 dimensions; 

6. Normalisation of 𝐄 according to 𝑦𝑖𝑗 =
𝑒𝑖𝑗

√∑ 𝑒𝑖𝑗
2𝑢

𝑗=1

; 

7. Finally, the 𝐘 matrix is the starting point for some clustering algorithms (i.e. 

𝑘-means, hierarchical clustering). 

The only difference between spectral clustering for classical and symbolic 

data lies in the applied distance measure. For details concerning distance 

measures for symbolic data, see Billard and Diday (2006) or Bock and Diday 

(2000). 

 



 

 

3. Ensemble clustering for symbolic data 

 

In general, ensemble learning methods are based on aggregated, combined 

results obtained from different models (clustering methods). These results can 

be seen as different points of view on the same dataset. Ensemble techniques 

have been applied with success in the context of supervised learning as they 

lead to improved accuracy and stability of algorithms (Breiman, 1996). 

In ensemble clustering, we combine the results of 𝑁 different models 

(𝑃1, … , 𝑃𝑛) into one final clustering (aggregated clustering, ensemble 

clustering), i.e. 𝑃∗ with 𝑘 clusters (Fred & Jain, 2005). 

There is a formal mathematical proof showing that in the case of ensemble 

learning in supervised tasks, the error reached by the ensemble is lower than 

any of the errors of the base models that form the ensemble (Gatnar, 2008). 

Ensemble clustering can be seen as the solution to the problem with the 

selection of the clustering method. In this case, different clustering methods 

allow us to take into account ‘different points of view’. Ensemble methods can 

prove effective when dealing with too few or too many data. If too many data 

occur, we can divide them into smaller, easier-to-learn partitions, and if there 

is a small amount of data, the same data can be used many times via 

bootstrapping techniques. Ensemble learning makes it also possible to deal 

with complex data or data too difficult to cluster. In this case, ensemble 

learning enables the data to be ‘cut’ into smaller, easier-to-learn parts, which 

is also known as the ‘divide and conquer’ approach. When dealing with many 

real-life problems involving decision-making, it is normal to consider 

information from many sources, known as information fusion (see for example 

Kuncheva, 2014; Zhou, 2012). 

In the case of symbolic data, the following paths for ensemble clustering can 

be distinguished: 



 

 

1. Clustering based on multiple relational matrices proposed by de Carvalho 

et. al. (2012). The idea is based on various distance matrices (that can be 

obtained from different distance measures, subsets of objects or subsets of 

variables). These relational matrices are used to calculate relevance weight 

vectors. The relevance weight vectors and distance matrices are then used to 

group a set of objects into final clusters; 

2. Applying one of the well-known ensemble clustering methods for symbolic 

data: 

a) proposal made by Leisch (1999), where many different clustering results are 

used to obtain cluster centres. Then these centres are used to obtain the final 

clusters. At the end, all objects are assigned to the nearest cluster. Medoids 

(cluster representatives) are used for symbolic data; 

b) adaptation proposed by Dudoit and Fridlyand (2003), where cluster labels 

are permutated to get all the possible consensus clustering and all the 

elements of ensemble clustering; 

c) Hornik’s (2005) idea to minimise the distance between the set of all the 

possible consensus clustering elements and all elements of the ensemble 

clustering; 

3. Applying one of the consensus functions (Fred & Jain, 2005): 

a) hypergraph partitioning which assumes that clusters can be represented as 

edges on a graph. Their vertices correspond to the objects to be clustered. 

Each edge describes a set of objects belonging to the same cluster. The 

problem of consensus clustering is reduced to finding the minimum cut of a 

hypergraph; 

b) the voting approach, where we permute cluster labels in such a way that the 

best agreement between the labels of two partitions is obtained. All the 

partitions from the cluster ensemble must be relabelled according to a fixed 

reference partition; 



 

 

c) mutual information which assumes that the objective function of a clustering 

ensemble can be formulated as the mutual information between the 

empirical probability distribution of labels in the consensus partition and the 

labels in the ensemble. A generalised definition of mutual information is 

usually applied in this approach; 

d) co-association-based functions where the main assumption is that objects 

that belong to the same cluster (‘natural cluster’) are co-located in the same 

clusters in different data partitions. The elements of the co-association 

matrix are defined as: 𝐶(𝑖, 𝑗) =
𝑛𝑖𝑗

𝑁
, where 𝑛𝑖𝑗 is the number of times that 

objects 𝑖 and 𝑗 are grouped in the same cluster (together) among all 𝑁 base 

partitions; 

e) finite mixture models where the main assumption is that the output labels 

are modelled as random variables drawn from a probability distribution 

described as a mixture of multinomial component densities. The objective 

of consensus clustering is formulated as a maximum likelihood estimation. 

In the empirical part, Leisch’s (labelled LE), Hornik’s (labelled HE), 

Dudoid’s and Fridlyand’s (labelled DFE) and the co-clustering matrix (CCE) 

are used to obtain the final partitions (clusters) with the application of the 

Silhouette (Rousseeuw, 1987) clustering index to find the final number of 

clusters. 

Although this index has some limitations, like bias toward convex or 

spherical clusters (see Dudek, 2020), high dimensions reduce its effectiveness 

(see Tomašev & Radovanović, 2016). This index is sensitive to noisy 

variables. 

 

4. Single and ensemble clustering results 

 



 

 

To compare how PCA and spectral clustering for symbolic data handle 

different shapes of clusters, the cluster.Gen function from the 

clusterSim package for the R software was used (Walesiak & Dudek, 

2024). The cluster.Gen function allows the generation of various cluster 

shapes. To generate symbolic interval-valued data, the data for each model is 

generated twice, thanks to which sets 𝐴 and 𝐵 are obtained. Minimum value 

𝑥𝑖𝑗
𝐴 , 𝑥𝑖𝑗

𝐵  is treated as the lower bound of the symbolic variable and the maximum 

is treated as the upper bound. The following simulation paths were used: 

a) different PCA for symbolic interval-valued data were applied, then 

ensemble clustering methods were used (path 𝑃1); 

b) spectral clustering with different distance measures (𝜎 = 2 in all models) 

was used, and the final 𝐘 matrix was applied for ensemble clustering (path 

𝑃2); 

c) both PCA and spectral clustering were used with different initial settings 

(path 𝑃3). 

The following clustering methods were applied: partitioning around 

medoids (PAM), hierarchical-clustering (single-link), dynamic clustering for 

symbolic data (SClust), clustering based on the distance matrix (DClust). Both 

SClust and DClust are functions of the symbolicDA package of R. 

The following datasets with known cluster structures were prepared with the 

application of the cluster.Gen function from the clusterSim package 

of the R software: 

a) set I: 100 objects in two well-separated clusters (see Figure 1) in five 

dimensions with means (4, 8,4, 8, −3), (0, 4, 0, 4,1) and covariance matrices 



 

 

∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.9)1 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.5)2 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = −0.7)3 , 

∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.84)4 , ∑

[
 
 
 
 

1 −0.45 −0.45 −0.45 −0.45
−0.45 1 −0.56 −0.56 −0.56
−0.45
−0.45
−0.45

−0.56
−0.56
−0.56

1
−0.58
−0.58

−0.58
1

−0.74

−0.58
−0.74

1 ]
 
 
 
 

5 ; 

b) set II: 100 objects in five not well-separated clusters in five dimensions (see 

Figure 2) with means (5,5,5,5,5), (−3,3, −3,3, −3), (0,0,0,0,0), 

(−5,−5, −5,−5,−5) and covariance matrices 

∑

[
 
 
 
 

1 −0.9 −0.9 −0.9 −0.9
−0.9 1 −0.7 −0.7 −0.7
−0.9
−0.9
−0.9

−0.7
−0.7
−0.7

1
−0.85
−0.85

−0.85
1

−0.9

−0.85
−0.9

1 ]
 
 
 
 

1 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.9),2  

∑ (𝜎𝑗𝑗 = 3, 𝜎𝑗𝑙 = 1.5)3 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0)4 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.2)5 ; 

c) set III: 100 objects in three well-separated clusters in five dimensions (see 

Figure 3) with means ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0)1 , ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = −0.9),2  

∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = 0.9)3 , ∑ (𝜎𝑗𝑗 = 3, 𝜎𝑗𝑙 = 1),4  ∑ (𝜎𝑗𝑗 = 1, 𝜎𝑗𝑙 = −0.5)5 . 

 

Figure 1. Two well-separated clusters in five dimensions (set I) 

 
Source: author’s work based on the R software. 
 
Figure 2. Five not well-separated clusters in five dimensions (set II) 



 

 

 
Source: author’s work based on the R software. 
 
Figure 3. Three well-separated clusters in five dimensions (set III) 
 

 
Source: author’s work based on the R software. 
 

To compare how PCA and spectral clustering perform for symbolic data, 50 

simulations were done and the average adjusted Rand index (Rand, 1971) was 

calculated. The average adjusted Rand index values are shown in Table 2 for 

single clustering methods and in Table 3 for ensemble clustering results. 

 

Table 2. Simulation results for single models: all paths and datasets 



 

 

Single model Dataset Adjusted Rand 
index value 

Calculation time 

pam 
(cPCA) 

I 
II 
III 

0.9984 
0.9862 

1 

2.95938 mins 
3.68677 mins 
3.50588 mins 

pam 
(mrPCA) 

I 
II 
III 

1 
0.9982 
0.7349 

2.94649 mins 
3.92382 mins 
3.67878 mins 

pam 
(covPCA) 

I 
II 
III 

0.9943 
1 
1 

4.12835 mins 
2.66233 mins 

57.90654 secs 

pam 
(specl & H) 

I 
II 
III 

0.9959 
0.9801 
0.9978 

2.96048 mins 
2.23560 mins 
4.96317 mins 

pam 
(specl & U_2) 

I 
II 
III 

1 
0.9993 

1 

2.90862 mins 
3.01923 mins 
4.97362 mins 

pam 
(specl & SO_1) 

I 
II 
III 

0.9424 
0.9720 

1 

2.60051 mins 
7.33325 mins 
5.86112 mins 

DClust 
(cPCA) 

I 
II 
III 

1 
0.5912 

1 

3.58567 mins 
10.95904 mins 

1.93726 mins 

DClust 
(mrPCA) 

I 
II 
III 

0.7723 
0.3434 

1 

1.72763 mins 
10.71638 mins 

3.84637 mins 

DClust 
(covPCA) 

I 
II 
III 

0.9882 
0.5864 
0.5567 

1.72323 mins 
10.70673 mins 

3.89015 mins 

DClust 
(specl & H) 

I 
II 
III 

1 
0.8065 
0.8899 

2.54698 mins 
16.12656 mins 
11.30388 mins 

DClust 
(specl & U_2) 

I 
II 
III 

0.9899 
0.7422 
0.7597 

13.63857 mins 
16.00192 mins 

5.76498 mins 

DClust 
(specl & SO_1) 

I 
II 
III 

0.9616 
0.5486 

1 

2.61785 mins 
15.94209 mins 

5.74380 mins 
Note. pam – partition around medoids, DClust – dynamic clustering based on the 
distance matrix, cPCA – centres PCA, mrPCA – midpoints and radii PCA, covPCA – 
covariance-based PCA, specl – spectral clustering, H – Hausdorff distance, U_2 – 
Ichino-Yaguchi distance, SO_1 – de Carvalho distance. 
Source: author’s work based on the R software. 
 
Table 3. Simulation results for ensemble models: all paths and datasets 

Ensemble 
model 

Dataset 
Adjusted Rand index value 

Path P1 Path P2 Path P3 

LE 
I 
II 
III 

0.8728 
0.6533 
0.8672 

0.8989 
0.7623 
0.9123 

0.9014 
0.9765 
0.9826 



 

 

HE 
I 
II 
III 

0.9836 
0.9123 
0.9635 

1 
1 
1 

1 
1 
1 

DFE 
I 
II 
III 

0.9927 
0.9563 
0.9972 

1 
0.9991 

1 

1 
0.9831 

1 

CCE 
I 
II 
III 

0.9873 
0.9654 
0.9862 

1 
0.9864 

1 

1 
1 
1 

Note. LE – Leich’s ensemble, HE – Hornik’s ensemble, DFE – Dudoit and Fridlyand’s 
ensemble, CCE – co-clustering matrix ensemble. 
Source: author’s work based on the R software. 
 

Dataset II (five not well-separated clusters in five dimensions) was the most 

challenging to cluster for all of the methods. However, the classical pam 

method combined with either the PCA or the spectral approach for symbolic 

data outperformed the DClust method designed for symbolic data. 

When we look at the ensemble results (Table 3), we can see that Hornik’s 

ensemble model, as well as Dudoit’s and Fridlyand’s, ensemble models 

achieved the highest average values of the adjusted Rand index across all 

model types. Similarly to the single model results, it was the most challenging 

to detect clusters by the ensemble models in Dataset II. Nevertheless, Hornik’s, 

Dudoit’s and Fridlyand’s ensemble models perform most efficiently. 

 

5. Conclusions 

 

Two different approaches for symbolic data transformation have been shown 

in the paper for ensemble learning with this type of data. The first approach 

uses the well-known PCA applied for symbolic data, the second one utilises 

spectral clustering. Additionally, a combination of PCA and the spectral 

approach was used in the ensembles. 

However, PCA for symbolic data is limited to symbolic interval-valued data 

only, while spectral clustering for symbolic data can handle various symbolic 

data types, as it requires only an appropriate distance measure for symbolic 



 

 

data. Notably, there are many different symbolic distance measures suitable 

for various symbolic variable types. 

Ensemble clustering for symbolic data enables the integration of different 

clustering results (‘points of view’) to achieve a single, improved and more 

stable clustering outcome. In ensemble clustering, the key steps such as 

variable selection, variable weighting and variable transformation remain 

critical, as in the case of a single clustering method. 

The results indicate that complex datasets (e.g. those with intricate cluster 

structures, outliers or noisy variables) are challenging for single symbolic 

clustering methods based on PCA. However, PCA combined with spectral 

clustering, as well as spectral clustering alone performs most effectively with 

such datasets (as measured by the Adjusted Rand Index). Similar trends are 

observed with ensemble clustering methods for symbolic data. Specifically, 

symbolic ensemble clustering techniques such as Hornik’s, Dudoit’s and 

Fridlyand’s methods generally outperform a co-clustering (co-occurrence) 

matrix and Leisch’s ensemble methods when dealing with complex data 

structures. 
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